

SFA Modernization Program
United States Department of Education
Student Financial Assistance

Java Coding Standards

Task Order #16
Deliverable #16.1.3

July 7, 2000

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 2 July 7, 2000

Table of Contents

1 Introduction ___ 4
1.1 Purpose___ 4
1.2 Scope __ 4
1.3 Audience ___ 5

2 Java Overview___ 6

3 Source Files ___ 7
3.1 Beginning Comments ___ 7
3.2 Package Statement ___ 7
3.3 Import Statements__ 8
3.4 Class and Interface Organization___ 8

4 Code Layout___ 9
4.1 Class Headers ___ 9
4.2 Method Headers ___ 9
4.3 Indentation ___ 9
4.4 White Space in the Code __ 9
4.5 Braces and Line Breaks __ 10
4.6 Aligning Assignment Statements __ 11
4.7 Line Lengths and Line Breaks ___ 11
4.8 Arithmetic Expression Layout ___ 12
4.9 if Statement Layout__ 12
4.10 Ternary Expression Layout ___ 13
4.11 switch/case Layout __ 13
4.12 Anonymous Classes ___ 13

5 Naming Conventions __ 15
5.1 Package Names ___ 15
5.2 Classes __ 15
5.3 Interfaces __ 15
5.4 Variables __ 16
5.5 Methods ___ 16
5.6 Constants __ 17
5.7 Exceptions ___ 17

6 Coding Objectives __ 18

7 Programming Style __ 20
7.1 Visibility __ 20

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 3 July 7, 2000

7.2 Code Granularity (Method Size)___ 21
7.3 Variables __ 21

7.3.1 Initialization___ 22
7.3.2 Referring to Class Variables and Methods _____________________________________ 23
7.3.3 Variable Usage ___ 23

7.4 Constants __ 24
7.5 Straight-line Code ___ 24
7.6 Conditionals ___ 25
7.7 Loops ___ 26
7.8 Switches___ 27
7.9 Notes on Specific Usage and Constructs __________________________________ 27

7.9.1 final__ 27
7.9.2 Constructors ___ 27
7.9.3 Threads___ 28

8 Comments ___ 29
8.1 Implementation Comment Formats ______________________________________ 29

8.1.1 Block Comments__ 29
8.1.2 Single-Line Comments ___ 30
8.1.3 Trailing Comments ___ 30
8.1.4 End-Of-Line Comments __ 30

8.2 Documentation Comments ___ 31

9 Code Examples ___ 32

10 JDBC Standards __ 34
10.1 JDBC Overview __ 34
10.2 JDBC Programming Overview __ 34
10.3 JDBC Drivers Overview ___ 34

10.3.1 JDBC-ODBC Drivers (Type 1) ___ 35
10.3.2 Native-API, Partly Java Drivers (Type 2)_______________________________________ 35
10.3.3 JDBC-Net Pure Java Drivers (Type 3) ___ 36
10.3.4 Native-Protocol, Pure-Java Drivers (Type 4)____________________________________ 37

11 Visual Age for Java__ 38

12 Glossary___ 40

13 References ___ 43

14 Appendix A – Deliverable 4.1.5 ___ 44

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 4 July 7, 2000

1 Introduction

1.1 Purpose
The Java Coding Standards document will assist SFA in developing Java programs in a uniform,
consistent manner. This coding standard document will ensure that programs developed under
these guidelines will be readable, maintainable by different programmers, and easier to debug and
test.

1.2 Scope
This document covers Java coding standards and includes:

• Java Overview – A high level overview of Java.

• Source Files – Organization of the source file.

• Code Layout – Structure the code should be written in.

• Naming Conventions – Standard methods of labelling.

• Coding Priorities – High-level requirements that are to be observed during coding and their
definitions.

• Programming Style – Layout conventions and principles used when coding.

• Comments – Guidelines for commenting code to explain functionality.

• Code Example – An example of source code that may be used as a reference to the correct
adherence of the principles and guidelines outlined within the document.

• There will also be examples of code to support the understanding of the
principles/guidelines. The examples of code that follow the incorrect adherence of the
principle/ guideline may still function correctly, but still do not follow the correct
adherence to the principle/guideline stated.

Note: Deliverable 4.1.5 – Internet Standards is included as an appendix to this document. This
deliverable contains supplementary information that is relevant to an overall Java application
development strategy. Specifically:

• Enterprise JavaBeans Modeling

• Java Server Pages Views

• Java Application Architecture

• Java Applet Construction Standards

• Browser-Based Application Construction Standards

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 5 July 7, 2000

1.3 Audience
This coding standards document is aimed at an audience of technical architects, designers and
developers charged with creating Java-based solutions. This document assumes that the reader is
knowledgeable in Java coding and Java-based solutions.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 6 July 7, 2000

2 Java Overview

Java is a programming language designed for use in the distributed environment of the Internet.
It’s design is based upon the C++ language. The current SFA Java code standard is Java 2
Platform Enterprise Edition (J2EE). Java supports many programming features which make it a
powerful and flexible language for building applications.

The main features are:

• Portable - The Java Virtual Machine (JVM) interprets Java coded applications and enables Java

code to be platform independent. As long as the JVM is integrated into the operating systems,
any Java applications can be executed without having to be recompiled.

• Secure - When Java programs are downloaded and run on the JVM, Java supports a flexible,

fine-granulated access system which grants authorized access only.

• Robust - Java has the ability to de-allocate memory to prevent bottlenecks and program

crashes. Java also has ability of exception handling abilities to deal with errors and recovery.

• Object Oriented - Java allows the development of applications through a set of self-contained

objects that interact. Each object encapsulates its data and exposes methods to other objects.

• Multithreading - By means of threads, independent execution paths are built. These threads

are built at the language level, enabling uniform support and APIs for multithreading
operations across all Java supported platforms.

• Dynamic - Required program components (classes) can be loaded from either the network or

from local memory, enabling Java programs to adapt to its environment.

Note: Java Coding Standards may differ based upon the development tool used.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 7 July 7, 2000

3 Source Files

A source file should contain one public class or interface. When private classes and interfaces are
associated with a public class, they can be placed in the same source file as the public class. The
public class should be the first class or interface in a source file.

Java source files are organized in the following manner:

• Beginning comments.
• Package Statement.
• Import statements.
• Class and interface declarations.

3.1 Beginning Comments
Beginning comments serve as a file header for the source file and provide information on the
archive, revision, date, and author.

EXAMPLE:
/*
 * $Archive: $
 * $Revision: $
 * $Date: $
 * $Author: $
 */

3.2 Package Statement
A package statement is the first non-comment line of a Java source file. All custom-developed
packages will utilize gov.sfa as their naming base (Refer to Deliverable 4.1.5 – Internet Standards
in the appendix for additional information).

EXAMPLE:
package java.awt;
package gov.sfa.schools;

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 8 July 7, 2000

3.3 Import Statements
In the import section, it is recommended that each imported module is listed explicitly.

EXAMPLE:

CORRECT
import java.awt.Frame;
import java.awt.Graphics;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import java.applet.AppletContext;

INCORRECT
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

3.4 Class and Interface Organization
The elements of a class should be in the following order:

• Class header.

• Constants (final class variables): public, protected, private.

• Public static inner classes.

• Protected inner classes, static or otherwise.

• Private inner classes, static or otherwise.

• Class variables (private only).

• Constructors.

• Other methods:

When ordering methods, ignore visibility specifiers (public, protected, private) and
follow these guidelines:
• Keep related methods together.

• When overriding superclass functions, keep them in the same order as in the
superclass, and preferably together.

• The class should end with the unitTest, getExpectedResult and main methods.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 9 July 7, 2000

4 Code Layout

The recommendations in this section are designed to create a solid code layout strategy. This
strategy will represent the logical structure of the code, make the code readable, and easy to
maintain.

4.1 Class Headers
• Write class headers on a single line (if the line does not exceed 80 characters), when possible.
• If not, break the line before extends and implements. Indent succeeding lines.
• If the class header is on a single line, put the opening brace at the end of that line.
• If the class header needs multiple lines, put the opening brace left aligned on a line by itself.

4.2 Method Headers
• Write method headers on a single line (if the line does not exceed 80 characters), when

possible.
• If not, break the line immediately after the opening parenthesis. This leaves all the parameters

on the same line.
• If the method header is on a single line, put the opening brace at the end of that line.
• If the method header needs multiple lines, put the opening brace left aligned on a line by itself.

4.3 Indentation
When indentation is necessary, use four spaces.

EXAMPLE:

CORRECT
if (bottom < index) {
 this.topRow = index – this.rows;
} else if (index < this.topRow) {
 this.topRow = index;
}

INCORRECT
if (bottom < index)
 this.topRow = index – this.rows;
else if (index < this.topRow)
 this.topRow = index;

4.4 White Space in the Code
Blank lines improve readability by setting off sections of code that are logically related.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 10 July 7, 2000

Add two blank lines in the following places:
• Between sections of a source file.
• Between class and interface definitions.

One blank line should be used in the following circumstances:

• Between methods
• Between the local variables in a method and its first statement
• Before a block (see section 8.1.1) or single-line (see section 8.1.2) comment
• Between logical sections inside a method to improve readability

Add one space in the following places:

• Between operators.
• After semicolons in for-loops.
• Before and after the assignment operator.
• No space in the following places:

• Between a method name and the opening parenthesis.
• Around opening and closing parentheses in a function declaration or invocation.
• Around opening and closing square brackets in an array declaration or reference.

4.5 Braces and Line Breaks
Use (curly) braces, even for blocks with only one statement. This removes one common source of
bugs and eases maintenance:

1. Statements can be inserted or removed within a block without worrying about adding or
removing braces.

2. Reduces the problem of matching else clauses to if clauses.

EXAMPLE:

CORRECT
if (bottom < index) {
 this.topRow = index – this.rows;
} else if (index < this.topRow) {
 this.topRow = index;
}

INCORRECT
if (bottom < index)
 this.topRow = index – this.rows;
else if (index < this.topRow)
 this.topRow = index;

This rule applies to the following constructs:

• for, while and do-while loop.
• if-else statements.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 11 July 7, 2000

• try, catch and finally clauses.
• synchronized blocks.

Note that the opening brace is at the end of the first line, even for class and method definitions.
The only exception is if the expression needs to be broken; in that case, readability is best served by
putting the opening brace on the next line.

4.6 Aligning Assignment Statements
• Align the “=” of related assignment statements. This sets them off as a group and shows

clearly that they are related.
• Do not align the “=” of unrelated statements. Such alignment gives an impression that all

statements are related.

EXAMPLE:

CORRECT
panelWidth = 90;
panelHeight = 30;

selectedIndex = 0;
lastIndex = 12;

INCORRECT
panelWidth = 90;
panelHeight = 30;
selectedIndex = 0;
lastIndex = 12;

4.7 Line Lengths and Line Breaks
Avoid lines longer than 80 characters, since they are not handled well by many terminals and
tools.

Break expressions that will not fit on a single line according to these general principles:

• Break after a comma.
• Break before an operator.
• Prefer higher-level breaks to lower-level breaks.
• Align the new line with the beginning of the expression at the same level on the previous

line.
• If the above rules lead to confusing code or if a large amount of code is lined up against

the right margin indent 8 spaces instead.

The following are examples of breaking method calls.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 12 July 7, 2000

EXAMPLE:
someMethod(longExpression1, longExpression2, longExpression3,
 longExpression4, longExpression5);

var = someMethod1(longExpression1,
 someMethod2(longExpression2,
 longExpression3));

4.8 Arithmetic Expression Layout
Following are two examples of laying out a long arithmetic expression. The first layout is the
recommended standard, because the break occurs outside the parenthesized expression, which is
at a higher level.

EXAMPLE:

CORRECT
longName1 = longName2 * (longName3 + longName4 – longName5)
 + 4 * longname6;

INCORRECT
longName1 = longName2 * (longName3 + longName4
 - longName5) + 4 * longname6;

4.9 if Statement Layout
Line wrapping for if statements should generally use the 8-space rule, since conventional (4
spaces) indentation makes seeing the body difficult.

EXAMPLE:

CORRECT
if ((condition1 && condition2)
 || (condition3 && condition4)
 || ! (condition5 && condition6)) {
 doSomethingAboutIt();
}

//OR USE THIS
if ((condition1 && condition2) || (condition3 && condition4)
 || ! (condition5 && condition6)) {
 doSomethingAboutIt();
}

INCORRECT
if ((condition1 && condition2)
 || (condition3 && condition4)
 ||!(condition5 && condition6)) { //BAD WRAPS
 doSomethingAboutIt(); //MAKE THIS LINE EASY TO MISS

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 13 July 7, 2000

}

4.10 Ternary Expression Layout
There are three recommended ways to format ternary expressions. Any of these layouts are
acceptable.

EXAMPLE:
alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta
 : gamma;

alpha = (aLongBooleanExpression)
 ? beta
 : gamma;

4.11 switch/case Layout
• Indent the case clauses with respect to the switch statement.
• Indent the statements that belong to a switch, one statement to a line.
• In the case of large, repetitive lists of cases, it may be better to do a table layout.

EXAMPLE:
switch (some_value) {
 case case1: bla_bla[0] = value1; break;
 case case2: bla_bla[0] = value2; break;
 case case3: bla_bla[0] = value3; break;
 ...
}

4.12 Anonymous Classes
An anonymous class is a particular form of inner classes – an innovation of Java 1.1. Here are two
cases of when an anonymous class may be used and examples of how to format each case.

Case 1:
If a class is used more than once, assign an instance to a variable.

EXAMPLE:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 14 July 7, 2000

ActionListener actionListener = new ActionListener() {
 public void processActionEvent(ActionEvent e) {
 ...
 }
};

this.comboBox.addActionListener(actionListener);
this.button.addActionListener(actionListener);

Case 2:
More often than not, the anonymous class is a listener designed to handle events from one specific
widget only. In this case, define and instantiate the class directly in the code.

EXAMPLE:
this.comboBox.addActionListener(new ActionListener() {
 public void processActionEvent(ActionEvent e) {
 ...
 }
});

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 15 July 7, 2000

5 Naming Conventions

Naming conventions are used to make programs more understandable and easier to read. They
can also give information about the function of the identifier. For example, whether it's a constant,
package, or class—which can be helpful in understanding the code.

5.1 Package Names
The prefix of a unique package name is written in all-lowercase ASCII letters and should be one of
the top-level domain names, currently com, edu, gov, mil, net, org, or one of the English two-letter
codes identifying countries as specified in ISO Standard 3166, 1981. All custom-developed
packages for SFA will utilize gov.sfa as their naming base

EXAMPLE:
com.sum.eng

gov.sfa.example

Note: Refer to Deliverable 4.1.5 – Internet Standards in the appendix for additional information.

5.2 Classes
• Class names should be nouns, in mixed case with the first letter of each internal word

capitalized.
• Try to keep class names simple and descriptive.
• Use whole words—avoid acronyms and abbreviations (unless the abbreviation is much more

widely used than the long form, such as URL or HTML).

EXAMPLE:
class FunctionPanel;
class Raster;

5.3 Interfaces

Interface names should be capitalized like class names.

EXAMPLE:
interface Alpha
interface ImageSprite

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 16 July 7, 2000

5.4 Variables
• Variables are in mixed case with a lowercase first letter. Internal words start with capital

letters. Variable names should not start with underscore “_” or dollar sign “$” characters,
even though both are allowed.

• Variable names should be short yet meaningful. The choice of a variable name should be
designed to indicate to the casual observer the intent of its use. One-character variable names
should be avoided except for temporary "throwaway" variables. Common names for
temporary variables are i, j, k, m, and n for integers; c, d, and e for characters.

• Variables should not use ownership prefixes like “my” or prefixes like i for integer, d for
double, etc... (implying type in name). However, always refer to them using the explicit
“this.fieldName” notation. Field names should always start with a lower case letter and
should separate words using capital letters, not underscores.

EXAMPLE:
int i;
float squareWidth;

5.5 Methods
• Method names are in proper case, with initial lower-case letter. If possible, construct method

names that follow the action-object paradigm, i.e., getAccount, printAll. The
recommended method name is getSize rather than size.

• Methods are called in the context of their class. As a result, it is not necessary to repeat the
class name in method names. If the class Customer has a method to retrieve the customer’s
name, name this method getName rather than getCustomerName. When users of the class
invoke this method, they write something like customer.getName(), which is preferable to
customer.getCustomerName().

• When calling a method from another method in the same class or in a subclass of it, always
use the explicit “this.methodName()”, to emphasize the calling of a method of this class.

EXAMPLE:
class Circle {
 ...
 int getRadius() {
 return this.radius;
 }
 int getArea() {
 return (this.getRadius() * this.getRadius()) * Math.PI;
 }
}

• Method parameters should be prefixed by one of the following: “a”, “an” or “new”,
depending on the method semantic.

EXAMPLE:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 17 July 7, 2000

class Person {
 ...
 void setName(String newName) {
 this.name = newName;
 }
 void setID(long newID) {
 this.ID = newID;
 }
 boolean isEqual(Person aPerson) {
 return (this.getID() == aPerson.getID());
 }
}

5.6 Constants
• The names of variables declared class constants and of ANSI constants should be all uppercase

with words separated by underscores ("_"). (ANSI constants should be avoided, for ease of
debugging.)

EXAMPLE:
public static final int DEFAULT_COLOR = Color.black;

private static final String DEFAULT_SERVER = ”\\LF3DEV01”;

• Javadoc comments are required for public, protected and package constants. (For additional

information on Javadocs refer to the Section 8 - Comments.)

5.7 Exceptions
• Exception names follow class-naming conventions, with the additional requirement that the

name end in Exception.

EXAMPLE:
* @exception ResourceNotFoundException. recoverable, try another resource

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 18 July 7, 2000

6 Coding Objectives

This section defines coding objectives and defines each objective. Use this table as a guide for
resolving design and implementation issues. The relative importance of each objective should be
based upon the requirements of the application being built.

DEFINITIONS OF OBJECTIVES:

Requirement Definition

Correctness Verifying the code works correctly.

Size This does not refer to the number of source code lines, but to the total size of
compiled code (the .class files). It also includes overhead imposed by non-
functional data, e.g., strings used internally in the program. Traditionally,
size also includes memory usage.

Speed This includes both execution speed (as measured by CPU usage) and
perceived responsiveness from the user’s point of view. These are not
necessarily the same thing.

Robustness Tolerance towards erroneous input and other error conditions. This does not
mean that a program or routine should accept bad data, but that it should
recognize and be able to handle it.

Safety Choose the implementation approach that is likely to result in the fewest
development errors (bugs).

Testability Easy to test.

Maintainability Code that is easy to maintain typically has several characteristics:

• It is easy to read and understand.

• It is well encapsulated. This allows changes (updates or fixes) to be
made with some confidence that it won’t impact something else.

• Documentation, including comments in the code, is in agreement
with the code.

Simplicity Self-describing.

Reusability This can mean class or function reuse in the same project, or it can mean
preparing for reuse on a later project. Designing for reuse typically has an
overhead of around 50%, split among additional design time, additional
documentation requirements, and additional testing.

A good compromise is to choose a design that does not preclude reuse.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 19 July 7, 2000

Requirement Definition

Portability The code is reusable across platforms. Coding for portability typically includes:

• Using a cross-platform library

• Using a subset of a language or library that is common and consistent
across platforms

• Isolating platform dependencies

When migrating Java code across platforms, differences between Java Virtual
Machine implementations, library implementations, and host GUIs need to be
accounted for.

As a consequence Java code must be tested on a number of different hardware
platforms, operating systems, and Web browsers to ensure portability and
compatibility.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 20 July 7, 2000

7 Programming Style

This section covers layout conventions and coding principles.

7.1 Visibility
• The visibility of fields and classes should be as narrow as possible.
• If outside access is needed to such fields, use access methods (a.k.a. getters and setters).

EXAMPLE:
class Person {
 private String name;
 public void setName(String newName) {
 this.name = newName;
 }

 public String getName() {
 return this.name;
 }
 ...
}

Whenever possible, access fields using getters even inside methods in the same class. This greatly
simplifies maintenance and readability.

EXAMPLE:

CORRECT
class Circle {
 ...
 int getRadius() {
 return this.radius;
 }
 int getArea() {
 return (this.getRadius() * this.getRadius()) * Math.PI;
 }
}

INCORRECT
class Circle {
 ...
 int getRadius() {
 return this.radius;
 }
 int getArea() {
 return (this.radius * this.radius) * Math.PI;
 }
}

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 21 July 7, 2000

7.2 Code Granularity (Method Size)
• A reasonable line count for a method depends on the complexity of the method. A module

that consists of sequential statements can be longer than a method containing complex
conditions and loops. If the sequential code is repetitive, such as an index-by-index array
initialization, the method may be as long as necessary to perform the required function.

• In general, methods should not be more that 15 “real” lines long (that is, not counting blank
lines added for readability and comments). Methods should never be longer than 50 “real”
lines. If a method’s implementations is too long, decompose it.

• A method should preferably do one single thing, and the method name should reflect this
function accurately. If it does additional functionality, ensure that this is reflected in the
method name. If this leads to a complicated or confusing method name, reconsider the
structure of the code.

EXAMPLE:
If there is a function named initPanelManagerAndReadAccountList, it would probably be
beneficial to split the code into methods named initPanelManager and readAccountList.

7.3 Variables
One declaration per line is recommended since it encourages commenting.

EXAMPLE:

CORRECT
 int level; // indentation level
 int size; // size of table

The example above uses one space between the type and the identifier. Another acceptable
alternative is to space out and align the code.

EXAMPLE:

CORRECT
 int level; // indentation level
 int size; // size of table
 Object currentEntry; // currently selected table entry

Both options are preferred over:

EXAMPLE:

INCORRECT
 int level, size;

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 22 July 7, 2000

Do not put different types on the same line.

EXAMPLE:

INCORRECT
 int lib, libarray[];

7.3.1 Initialization
• All variables, including fields and class variables, should be initialized at the point of

declaration. Although all Java declarations have default initialization values (0, null, false),
initialize all variables explicitly.

• Java allows initialization of arrays using the same syntax as C and C++, by enclosing a
comma-delimited set of values in braces. A comma after the final value is permissible: use this
facility, as it makes for easier maintenance—it is easier to add additional values to or remove
values from the end of the list.

• Java 1.1 allows initializer blocks among the declarations. An initializer block is a section of
code enclosed in braces. There are two kinds of initializer blocks: static and instance.

Static initializer blocks are executed the first time a class is instantiated. During static
initialization (class initialization), the following steps are taken:

1. Class initialization of the superclass is performed, unless it has previously been done.
2. Static variables are initialized and static initializer blocks are executed. This happens

in the order they are listed, from top to bottom. (Does not apply to: instance variables,
instance initializer blocks and methods.)

Note that static and instance initializer blocks are allowed in Java 1.1. Static initializer blocks
are executed in order when the class is first instantiated; instance initializer blocks are
executed in order after the superclass constructor runs, but before the class constructor runs.

Instance initializer blocks are executed whenever a class is instantiated. During object
initialization (instance initialization), things happen in the following order:

1. If this is the first time the class is instantiated, all the class (static) initialization takes
place.

2. Enter a constructor. If a constructor is not specified, the compiler automatically
supplies a default constructor with no arguments.

3. The superclass constructor is called. If a constructor does not explicitly invoke a
superclass constructor, the default (argument-less) superclass constructor is called.

4. All instance variables are initialized and instance initializer blocks are executed. This
happens in the order they are listed, from top to bottom. (Does not apply to class
variables, class initializer blocks and methods.)

• Use initializer blocks to perform any initialization that can’t be performed by direct variable

initialization; put each initializer block immediately following the variable in question. In the

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 23 July 7, 2000

examples below, note that the array can be initialized without using an initializer block, while
the vector object requires one because of the calls to the addElement method.

EXAMPLE:
private Vector listAnything = new Vector();

{ // Instance initializer block
 listAnything.addElement(someObject);
 listAnything.addElement(anotherObject);
}

private static int[] multipliers = {
 5, 4, 3, 2, 7, 6, 5, 4, 3, 2,
};

private static Screen screen = new Screen();

static {
 // Static initializer block
 screen.setValue(someValue);
}

7.3.2 Referring to Class Variables and Methods
Avoid using an object to access a class (static) variable or method. Use a class name instead.

EXAMPLE:

CORRECT

classMethod();
AClass.classMethod();

INCORRECT

anObject.classMethod();

7.3.3 Variable Usage
Always use a variable for a single purpose.

EXAMPLE:

INCORRECT
int i;
...
for (i = 0; i < accountList.size(); ++ i) {
 ...
}
...

// Swap elements:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 24 July 7, 2000

i = anyArray[0];
anyArray[0] = anyArray[1];
anyArray[1] = i;

...

The two uses of the variable i above have nothing to do with one another. Creating unique
variables for each purpose of the code will improve the readability.

Do not use the assignment operator in a place where it can be easily confused with the equality
operator.

EXAMPLE:

CORRECT
if ((c++ = d++) != 0) {
 ...
}

INCORRECT
if (c++ = d++) {
 ...
}

Do not use embedded assignments in an attempt to improve run-time performance.

EXAMPLE:

CORRECT
a = b + c;
d = a + r;

INCORRECT
d = (a = b + c) + r;

7.4 Constants
Numerical constants (literals) should not be explicitly coded, except for -1, 0, and 1, which can
appear in a for loop as counter values.

7.5 Straight-line Code
Straight-line code can be divided into two categories:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 25 July 7, 2000

1. A sequence of statements that must be in a specific order: In this case, there are
dependencies between statements; one statement must be executed before another for the
program logic to work correctly.

Here are a few simple guidelines:
• Organize the code so that the dependencies are clear.
• Name methods so that dependencies are obvious at their point of call.
• Use method parameters or return values to make dependencies obvious.
• Document unclear dependencies.

2. A sequence of statements whose order doesn't matter: In this case, the program will work

correctly no matter what the order of statements.

Organize the statements so that readers do not need to skip around to find required

information:
• Keep related statements together.
• Localize references to variables, i.e., declare and initialize variables as close as possible

to where they are used.

7.6 Conditionals
• Complex conditions can be hard to read and understand. One way to improve readability is

by using additional boolean variables. In the first code fragment below the meaning of the
test is straightforward; in the second, it is not as obvious.

EXAMPLE:

CORRECT
final boolean finished = (element < 0 || MAX_ELEMENTS < element);
final boolean repeatedEntry = (element == lastElement);

if (finished || repeatedEntry) {
 ...
}

INCORRECT
if (element < 0 || MAX_ELEMENTS < element ||
 element == lastElement)
{
 ...
}

This approach both simplifies and documents complex expressions, making it easier to program
and maintain without errors.

• If a chain of if–then statements are required, code the most common cases first.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 26 July 7, 2000

• Strive to minimize the number of branches in the code. Linear code is easier to test.
• Limit nesting to three levels.
• Compare boolean values to true or false implicitly, not explicitly.

EXAMPLE:

CORRECT
if (valid) {

 ...
}

if (!valid) {
 ...
}

INCORRECT
if (valid == true) {
 ...
}

if (valid == false) {
 ...
}

7.7 Loops
• It is recommended that a for loop is used whenever possible. The advantages of the for loop

is that it collects the loop control in a single place and that it allows a loop control variable to
be declared that is not accessible outside the loop.

EXAMPLE:
for (int i = 0; i < vector.size(); ++i) {
 ...
}

• Never modify the loop control variable inside the for loop. If modifying the control variable
becomes necessary, use a while loop instead.

EXAMPLE:

CORRECT
int i = 0;
while (i < vector.size()) {
 Person person = (Person) vector.elementAt(i);
 if (person. isTired()) {
 vector.removeElementAt(i);
 } else {
 ++ i;
 }
}

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 27 July 7, 2000

INCORRECT

for (int i = 0; i < vector.size(); ++ i) {
 Person person = (Person) vector.elementAt(i);
 if (person.isTired()) {
 vector.removeElementAt(i);
 -- i; // Loop control is off limits!
 }
}

• Use loops that test exit conditions at the top or the bottom. If this cannot be easily

accomplished, rewrite the loop as a “while (true)” infinite loop with a test in the middle of
the loop. If possible, use only a single break statement to exit the loop.

• If possible, make loops short enough to view all at once. This is especially important if the loop
body is complex. If the loop code grows beyond about 15 lines, consider restructuring the
code.

• Limit nesting to three levels.

7.8 Switches
• Never let flow control ”fall through” from one case label to the next by omitting the break

statement.

7.9 Notes on Specific Usage and Constructs

7.9.1 final
Apply the final keyword to classes, methods and variables:

• A final class may not be subclassed.
• A final method may not be overridden.
• A final variable may never be changed.

Using final on a class, method, or variable may have an optimization effect on the Java code.
The compiler may be able to perform inlining or compile-time linking instead of dynamic linking
at run-time. For this reason, apply final to all classes and methods that are not intended to be
subclassed and overridden.

7.9.2 Constructors
• There should normally be only one “main” constructor in a class. Additional convenience

constructors may be defined, but they should be implemented in terms of the main
constructor. This will reduce duplicate code.

EXAMPLE:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 28 July 7, 2000

“MAIN” CONSTRUCTOR
public MultiLineLabel(
 String aLabel,
 int aMarginWidth,
 int aMarginHeight,
 int aTextAlignment,
 int aFixedSize)
{
 this.breakLabel(aLabel);
 this.marginWidth = aMarginWidth;
 this.marginHeight = aMarginHeight;
 this.textAlignment = aTextAlignment;
 this.fixedWidth = aFixedSize;
}

WRONG CONVENIENCE CONSTRUCTOR (REPEATS CODE FROM ABOVE)
public MultiLineLabel(String aLabel) {
 this.breakLabel(aLabel);
 this.marginWidth = 0;
 this.marginHeight = 0;
 this.textAlignment = Alignment.LEFT;
 this.fixedWidth = 0;
}

CORRECT CONVENIENCE CONSTRUCTOR
public MultiLineLabel(String aLabel) {
 this(aLabel, 0, 0, Alignment.LEFT, 0);
}

7.9.3 Threads
Debugging and profiling can be more effective by naming all threads explicitly. Therefore, use the
Thread constructors that take a name parameter, (e.g. use Thread(String aName) instead of
Thread().)

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 29 July 7, 2000

8 Comments

The two main comment types are implementation comments and documentation comments.

Implementation comments are those found in C++, which are delimited by /*...*/, and //.
Implementation comments are meant for commenting out code or for comments about a
particular implementation.

Documentation comments (known as "Javadoc comments") are Java-only, and are delimited by
/**...*/. Document comments can be extracted to HTML files using the Javadoc tool. Document
comments are meant to describe the specification of the code, from an implementation-free
perspective and are to be read by developers who might not have the source code at hand.

Comments should be used to give overviews of code and provide additional information that is
not readily available in the code itself. Comments should contain only information that is relevant
to reading and understanding the program. For example, information about how the
corresponding package is built or in what directory it resides should not be included as a
comment.

Comments should not be enclosed in large boxes drawn with asterisks or other characters.

Comments should never include special characters such as form-feed and backspace.

8.1 Implementation Comment Formats
Programs can have four styles of implementation comments: block, single-line, trailing, and end-
of-line.

8.1.1 Block Comments
Block comments are used to provide descriptions of files, methods, data structures and algorithms.
Block comments may be used at the beginning of each file and before each method. They can also
be used in other places, such as within methods. Block comments inside a function or method
should be indented to the same level as the code they describe.

A block comment should be preceded by a blank line to set it apart from the rest of the code.

EXAMPLE:
/*
 * Here is a block comment.
 */

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 30 July 7, 2000

8.1.2 Single-Line Comments
Short comments can appear on a single line indented to the level of the code that follows. If a
comment can't be written in a single line, it should follow the block comment format (see section
8.1.1). A single-line comment should be preceded by a blank line. Here's an example of a single-
line comment in Java code (also see "Documentation Comments" – section 8.2).

EXAMPLE:
if (condition) {

 /* Handle the condition. */
 ...
}

8.1.3 Trailing Comments
Short comments can appear on the same line as the code they describe, but should be shifted far
enough to separate them from the statements. If more than one short comment appears in a
chunk of code, they should all be indented to the same tab setting.

EXAMPLE:
if (a == 2) {
 return TRUE; /* special case */
} else {
 return isPrime(a); /* works only for odd a */
}

8.1.4 End-Of-Line Comments
The // comment delimiter can comment out a complete line or only a partial line. It shouldn't be
used on consecutive multiple lines for text comments; however, it can be used in consecutive
multiple lines for commenting out sections of code.

EXAMPLES OF ALL THREE STYLES FOLLOW:
if (any > 1) {

 // Do a double-flip.
 ...
}
else {
 return false; // Explain why here.
}
//if (thi > 1) {
//
// // Do a triple-flip.
// ...
//}
//else {

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 31 July 7, 2000

// return false;
//}

8.2 Documentation Comments
Note: See "Java Source File Example" for examples of the comment formats described here.

For further details, see "How to Write Doc Comments for Javadoc" which includes information on
the Javadoc comment tags (@return, @param, @see):

http://java.sun.com/products/jdk/javadoc/writingdoccomments.html

For further details about Javadoc comments and Javadoc, see the Javadoc home page at:

http://java.sun.com/products/jdk/javadoc/

Javadoc comments describe Java classes, interfaces, constructors, methods, and fields. Each
Javadoc comment is set inside the comment delimiters /**...*/, with one comment per class,
interface, or member. This comment should appear just before the declaration.

EXAMPLE:
/**
 * The Example class provides ...
 */
public class Example { ...

Notice that top-level classes and interfaces are not indented, while their members are. The first
line of Javadoc comment (/**) for classes and interfaces is not indented; subsequent Javadoc
comment lines each have one space of indentation (to vertically align the asterisks). Members,
including constructors, have four spaces for the first Javadoc comment line and five spaces
thereafter.

If there is a need to provide information about a class, interface, variable, or method that isn't
appropriate for documentation, use an implementation block comment (see section 8.1.1) or
single-line (see section 8.1.2) comment immediately after the declaration. For example, details
about the implementation of a class should go in such an implementation block comment
following the class statement, not in the class Javadoc comment.

Doc comments should not be positioned inside a method or constructor definition block, because
Java associates documentation comments with the first declaration after the comment.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 32 July 7, 2000

9 Code Examples

The following example shows how to format a Java source file containing a single public class.
Interfaces are formatted similarly.

/*
 * @(#)Sfa.java
 * 1.82
 * 99/03/18
 * Jane Doe – SFA
 *
 *
 *
 */

package java.any;

import java.any.anyt.AnyAny;

/**
 * Class description goes here.
 *
 * @version 1.82 18 Mar 1999
 * @author Firstname Lastname
 */
public class Any extends SomeClass {
 /* A class implementation comment can go here. */

 /** classVar1 documentation comment */
 public static int classVar1;

 /**
 * classVar2 documentation comment that happens to be
 * more than one line long
 */
 private static Object classVar2;

 /** instanceVar1 documentation comment */
 public Object instanceVar1;

 /** instanceVar2 documentation comment */
 protected int instanceVar2;

 /** instanceVar3 documentation comment */
 private Object[] instanceVar3;

 /**
 * ...constructor Any documentation comment...
 */
 public Any() {
 // ...implementation goes here...
 }

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 33 July 7, 2000

 /**
 * ...method doSomething documentation comment...
 */
 public void doSomething() {
 // ...implementation goes here...
 }

 /**
 * ...method doSomethingElse documentation comment...
 * @param someParam description
 */
 public void doSomethingElse(Object someParam) {
 // ...implementation goes here...
 }
}

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 34 July 7, 2000

10 JDBC Standards

10.1 JDBC Overview

Java Database Connectivity (JDBC) is the current standard for Java programs to access
information from a database. JDBC is a “low-level” database independent API that enables the
creation of platform independent client/server database applications. It does this by utilizing
database specific drivers. Similar to ODBC (Open Database Connectivity), JDBC is also based on
the X/Open SQL Call-Level Interface.

JDBC is used for 3 specific purposes:

• connecting to a database.
• executing SQL statements.
• processing the results.

10.2 JDBC Programming Overview

Initially a developer will load the JDBC classes to the Java application or applet class. Then in
order to incorporate database calls through a Java application, applet, or servlet to any database,
the developer must identify the name of the JDBC driver to be used and include it in the
distribution of the application.

Within the code, there are four major steps in the implementation of JDBC:

1. Create the connection between the client and the database.

2. Create statement handles for passing data from the database into variables in the Java

program.

3. Manipulate the variables via the programming logic.

4. Move data back into the database before closing out the connection and statements. (As

Needed)

10.3 JDBC Drivers Overview

JDBC Drivers are a set of classes that implement the JDBC interfaces for a particular database.
There are four main types of drivers:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 35 July 7, 2000

10.3.1 JDBC-ODBC Drivers (Type 1)
The JDBC-ODBC drivers translate JDBC method calls into ODBC function calls. This enables a
client to connect to an ODBC database via Java calls and JDBC, which means that the neither the
database nor middle tier needs to be Java compliant. The main advantage is that applications can
easily access databases from multiple vendors by choosing the an appropriate ODBC driver.
However, when ODBC is used, the ODBC driver manager and drivers must be installed on every
client that uses the ODBC APIs. Figure 1 shows how JDBC accesses a database via a Type 1
Driver:

B r o w s e r

D r i v e r M a n a g e r

J D B C D r i v e r

A p p l i c a t i o n L o g i c

O D B C D L L

D a t a b a s e
S p e c i f i c
P r o t o c o l

C l i e n t

H T T P S e r v e r

D a t a b a s e

W W W H o s t

U R L

L o a d

V e n d o r A P I L i b r a r y

Figure 1: JDBC Type 1 Driver

10.3.2 Native-API, Partly Java Drivers (Type 2)
Native-API, Partly Java Drivers convert JDBC calls into calls for a specific database, which
requires a vendor-supplied library to translate JDBC functions into the DBMS's specific query
language. This driver also requires a native vendor-supplied library stored on the client, which is
not suitable for downloading over a network. These Type 2 drivers are as not as flexible with
database platforms as the Type 1 drivers, but Type 2 drivers are faster due to the ODBC
translation layer being removed. Figure 2 identifies how JDBC accesses a database via a Type 2
Driver:

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 36 July 7, 2000

B r o w s e r

D r i v e r M a n a g e r

J D B C D r i v e r

A p p l i c a t i o n L o g i c

V e n d o r A P I L i b r a r y

D a t a b a s e
S p e c i f i c
P r o t o c o l

C l i e n t

H T T P S e r v e r

D a t a b a s e

W W W H o s t

U R L

L o a d

Figure 2: JDBC Type 2 Driver

10.3.3 JDBC-Net Pure Java Drivers (Type 3)
JDBC-Net Pure Java Drivers convert JDBC calls into a database-independent net protocol, which
are translated to database specific APIs by a middle tier server. The overall architecture consists of
three tiers: the JDBC client and driver, middleware (software that sits on a middle tier between
an object residing on one server machine and any clients that want to access that object), and the
database(s) being accessed. Type III drivers are best suited for Internet/intranet-based, multi-user
data-intensive applications, including concurrent data operations where scalability and
performance is a major requirement. The server can handle multiplexing management among
several databases, provide logging and administration facilities, load balancing features, and
support catalog and query caches. Figure 3 identifies how JDBC accesses a database via a Type 3
Driver:

Ti
er

 3

D r i v e r V e n d o r M i d d l e w a r e
C o m p o n e n t

J D B C C l a s s e s a n d
D r i v e r C l a s s e s

D a t a b a s e S e r v e r

J a v a - C a p a b l e B r o w s e r

Ti
er

 1
Ti

er
 2 O D B C

D r i v e r
N a t i v e
L i b r a r y

D a t a b a s e
C l i e n t L i b r a r y

S o c k e t
T C P / I P

D y n a m i c a l l y
D o w n l o a d e d

D a t a b a s e
C l i e n t L i b r a r y

Figure 3: JDBC Type 3 Driver

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 37 July 7, 2000

10.3.4 Native-Protocol, Pure-Java Drivers (Type 4)
Native-Protocol, Pure-Java Drivers convert JDBC calls directly into proprietary database vendor
protocols without the use of APIs. They can be written entirely in Java and (like Type 3 drivers)
can provide for just-in-time delivery of applets, which provides high performance. Type 4 drivers
are only available from the DBMS vendors. Figure 4 identifies how JDBC accesses a database via
a Type 4 Driver:

Ti
er

 3

D r i v e r V e n d o r M i d d l e w a r e
C o m p o n e n t

J D B C C l a s s e s a n d
D r i v e r C l a s s e s

D a t a b a s e S e r v e r

J a v a - C a p a b l e B r o w s e r

Ti
er

 1
Ti

er
 2

O D B C
D r i v e r

D a t a b a s e
C l i e n t L i b r a r y

S o c k e t
T C P / I P

D y n a m i c a l l y
D o w n l o a d e d

D a t a b a s e
C l i e n t L i b r a r y

J D B C D r i v e r s

Figure 4: JDBC Type 4 Driver

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 38 July 7, 2000

11 Visual Age for Java

IBM’s Visual Age for Java, Enterprise Edition, version 3.0 is the current standard SFA Java
development tool. The software provides support for the build, test and deployment stages of Java
applications, JavaBeans components, servlets and applets. Visual Age for Java also provides tools
that support a high-level of code reuse and allows for integrated team development.

The main components of the Visual Age suite include:

• Integrated Development Environment – set of windows which include the Workbench, Log,

Console, Debugger, and Repository Explorer. These windows provide access to the
development tools to create Java applets and standalone Java applications.

• Visual Composition Editor (VCE) – used to create object-oriented programs by manipulating

graphics (visual programming). Specifically, graphical user interfaces are created from
prefabricated beans and relationships are defined (called connections) between beans.

• Team Programming Support – provides a team development environment through a shared

code repository.

• Builders

− Enterprise Access Builder for Transactions (EAB) – uses connectors that are based on IBM’s
Common Connector Framework (CCF) to provide interfaces to a number of
environments, including CICS, MQSeries.

− RMI Access Builder – provides remote access to Java beans in a distributed, client-server

environment.

− C++ Access Builder – provides access from Java applications to services written in C++.

• CICS Transaction Server – allows the creation of Java applications that execute under CICS

Transaction Server for OS / 390 Release 3.1.

• Data Access

− DB2 Stored Procedure Builder (SPB) – enables the writing of Java stored procedures to run
on a DB2 server.

− SQLJ – allows the embedding of SQL statements in a Java program with embedded SQLJ,

a translator, and a runtime environment.

− Enterprise Access Builder for Persistence (Persistence Builder) – enables the mapping of

information stored in relational databases to objects and relationships between objects.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 39 July 7, 2000

• Distributed Debugger – is a client server application which enables the debugging of Java

applications.

• Enterprise Java Bean (EJB) Development Environment – enables the development and testing of

EJBs and access (adapter) beans. It also provides an incremental consistency checker to ensure
EJBS are written to programming specifications.

• Enterprise Toolkits:

− Enterprise Toolkit for Workstations (ET/Workstation) – enables the development of platform-
specific code on Windows NT.

− Enterprise Toolkit for OS/390 (ET/390) – allows the development of platform-specific code

for the OS/390 platform.

• External SCM Tools – allows the use of an external software configuration management (SCM)

system form within Visual Age for Java.

• IDL Development Environment – allows the work of both the integrated interface definition

language (IDL) and generated Java code in one browser page that works with a user-specified
IDL-to-Java compiler.

• JSP/Servlet Development Environment – incorporates the development and testing of Java Server

pages.

• Migration Assistant - creates a code framework to migrate Active X controls to Java Beans.

• Tivoli Connection – generates Tivoli events and interfaces to the Tivoli Enterprise Console to

manage your Java applications.

• Tool Integrator – integrates Java applications that reside on the file system in order to launch

them from within the Integrated Development Environment (IDE).

• XML Metadata Interchange (XMI) toolkit – integrates with the Rational Rose modeling tool.

Java converts the Rose model (.mdl files) into an XMI (the XML data type definition for UML)
format which facilitates the rapid transformation of business models.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 40 July 7, 2000

12 Glossary

Term Definition

Abstract base class A class from which no objects may be created;
it is only used as a base class for the derivation
of other classes. A class is abstract if it includes
at least one member function that is declared as
abstract.

Accessor A method which returns the value of a data
member.

Catch clause Code that is executed when an exception of a
given type is raised. The definition of an
exception handler begins with the keyword
catch.

Class A user-defined data type which consists of data
elements and methods which operate on that
data. Data defined in a class is called member
data and methods defined in a class are called
member functions or methods.

Constructor A method which initializes an object.

Default constructor A constructor which needs no arguments.

Default visibility members of a
class

Member data and functions which are
accessible within the package by specifying an
instance of the class (or one of its subclasses)
and the name. They are not accessible from
outside the package.

Exception A run-time program anomaly that is detected
in a function or member function. Exception
handling provides for the uniform management
of exceptions. When an exception is detected, it
is thrown (using a throw expression) to the
exception handler.

Finally clause Code that is executed at the end of an
exception handling try block regardless of how
the block is exited.

Forwarding method A method which does nothing more than call
another method.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 41 July 7, 2000

Term Definition

Identifier A name which is used to refer to a variable,
constant, method or type in Java. When
necessary, an identifier may have an internal
structure which consists of a prefix, a name,
and a suffix (in that order).

Immutables Those classes or objects whose state can not be
changed, such as strings or final variables. In
the case of immutable objects, their state is
determined solely by the constructor.

Iterator An object which, when invoked, returns the
next object from a collection of objects.

Mutables Those object which are not immutable or
primitive.

Overloaded method name A name which is used for two or more methods
or member functions having different
arguments.

Overridden member function A member function in a base class which is re-
defined in a derived class.

Pre-defined data type or primitive A type which is defined in the language itself,
such as int.

Private members of a class Only visible within member functions of the
class itself.

Protected members of a class Member data and functions which are
accessible within the package by specifying an
instance of the class (or one of its subclasses)
and the name. Outside the package these
members are only accessible from member
functions within derived classes

Public members of a class Member data and member functions which are
accessible everywhere by specifying an instance
of the class and the name.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 42 July 7, 2000

Term Definition

Reference A pointer to an object. Any expression which
uses “new” to create an object returns a
reference. When an object is passed as a
parameter, or returned by a method a new
reference is created. When a primitive (e.g., an
integer or character) is passed in or out of a
method, a copy of the object is made and a new
reference is not needed

Scope of a name Refers to the context in which it is visible.1

Sliced When an object that has been converted to a
superclass object and some of its data has
become inaccessible.

1 Context, here, means the methods or blocks in which a given variable name can be used.

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 43 July 7, 2000

13 References

Code Conventions for the Java Programming Language – Sun Microsystems
http://java.sun.com/docs/codeconv/html/CodeVonvTOC.doc.html

Examining JDBC Drivers, by Mukul Sood
Dr. Dobb's Journal January 1998
http://www.ddj.com/articles/1998/9801/9801i/9801i.htm

IBM’s About VisualAge for Java, Enterprise Edition, Version 3.0
http://www-4.ibm.com/software/ad/vajava/vaj3enterprise.html

Java Coding Standards – Andersen Consulting
Resources eCommerce Methodology

JDBC Data Access API - Sun
http://java.sun.com/products/jdbc/

Netscape’s Software Coding Standards Guide for Java
http://developer.netscape.com/docs/technote/java/codestyle.html

Oracle’s Introduction to JDBC
http://www.oracle.com/oramag/webcolumns/tbrief.html

Oracle Java Roadmap: Java Overview
http://technet.oracle.com/tech/java/jroadmap/java/listing.htm

US Department of Education Java Coding Standards
Student Financial Assistance
SFA Modernization Partner

 44 July 7, 2000

14 Appendix A – Deliverable 4.1.5

